Solvent dramatically affects protein structure refinement.
نویسندگان
چکیده
One of the most challenging problems in protein structure prediction is improvement of homology models (structures within 1-3 A C(alpha) rmsd of the native structure), also known as the protein structure refinement problem. It has been shown that improvement could be achieved using in vacuo energy minimization with molecular mechanics and statistically derived continuously differentiable hybrid knowledge-based (KB) potential functions. Globular proteins, however, fold and function in aqueous solution in vivo and in vitro. In this work, we study the role of solvent in protein structure refinement. Molecular dynamics in explicit solvent and energy minimization in both explicit and implicit solvent were performed on a set of 75 native proteins to test the various energy potentials. A more stringent test for refinement was performed on 729 near-native decoys for each native protein. We use a powerfully convergent energy minimization method to show that implicit solvent (GBSA) provides greater improvement for some proteins than the KB potential: 24 of 75 proteins showing an average improvement of >20% in C(alpha) rmsd from the native structure with GBSA, compared to just 7 proteins with KB. Molecular dynamics in explicit solvent moved the structures further away from their native conformation than the initial, unrefined decoys. Implicit solvent gives rise to a deep, smooth potential energy attractor basin that pulls toward the native structure.
منابع مشابه
Refinement of Protein NMR Structure under Membrane-like Environments with an Implicit Solvent Model
Refinement of NMR structures by molecular dynamics (MD) simulations with a solvent model has improved the structural quality. In this study, we applied MD refinement with the generalized Born (GB) implicit solvent model to protein structure determined under membrane-like environments. Despite popularity of the GB model, its applications to the refinement of NMR structures of hydrophobic protein...
متن کاملWater structure in cubic insulin crystals.
The electron density distribution of the solvent in the cubic insulin crystal structure, which occupies 65% of the volume, has been mapped from 1.7-A resolution diffraction data by an iterative difference Fourier method, using the previously determined protein structure as the refinement restraint. Starting with phases from the protein and a flat solvent model, the difference map calculated fro...
متن کاملRefinement of protein structures in explicit solvent.
We present a CPU efficient protocol for refinement of protein structures in a thin layer of explicit solvent and energy parameters with completely revised dihedral angle terms. Our approach is suitable for protein structures determined by theoretical (e.g., homology modeling or threading) or experimental methods (e.g., NMR). In contrast to other recently proposed refinement protocols, we put a ...
متن کاملMimicking the action of folding chaperones in molecular dynamics simulations: Application to the refinement of homology-based protein structures.
A novel method for the refinement of misfolded protein structures is proposed in which the properties of the solvent environment are oscillated in order to mimic some aspects of the role of molecular chaperones play in protein folding in vivo. Specifically, the hydrophobicity of the solvent is cycled by repetitively altering the partial charges on solvent molecules (water) during a molecular dy...
متن کاملThe solvent component of macromolecular crystals
The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scatterin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 51 شماره
صفحات -
تاریخ انتشار 2008